Daniel do Valle Corgozinho
Trade Analyst
Ministry of Development, Industry and Commerce
Esplanada dos Ministérios – Bloco J
70056-900 – Brasília – DF
Tel: + 55 61 329 79 23
Email danielc@mdic.gov.br

CLORO-SODA INDUSTRY

1 - Informações sobre a industria do cloro/soda no Brasil

A produção de cloro a partir das tecnologias de uso generalizado na indústria mundial utiliza processo que associa, necessariamente a produção de cloro à produção de soda cáustica, na proporção de 1 cloro/1,1 soda.

A industria do cloro/soda é a vertente da industria química nacional que demanda intensamente energia elétrica. As indústrias de cloro/soda consumiram 4.227,6 GW de energia em 1998, o que correspondeu a 3,0% do consumo industrial de energia elétrica no período.

O processo de produção do cloro/soda consiste na passagem de uma corrente elétrica em salmoura de cloreto de sódio, obtendo como resultado o cloro (Cl₂), a soda (NaOH) e o hidrogênio (H₂).

Existem 12 produtores de cloro/soda no país. A capacidade instalada total é de 1.280 mil toneladas de cloro e 1.400 mil toneladas de soda. O Brasil responde por cerca de 3% da capacidade instalada mundial, ocupando a sexta posição no mundo. Na América Latina, a capacidade instalada é de 2.367 mil toneladas. A industria nacional responde por 55% do total.

Sessenta e seis (66%) da capacidade instalada para produção de cloro encontra-se na Região Nordeste, 32% no Sudeste, 1,3% no Sul e 0,7% no Norte.

As maiores industrias são a Trikem/AL, com capacidade instalada de 406 mil toneladas, a Dow Química/BA, com 360 mil toneladas e a Carbocloro/SP, com 235 mil toneladas. Juntas as três empresas respondem por 78% da capacidade instalada nacional.

Em 1998, a produção nacional foi de 1.155 mil toneladas e o consumo aparente, um pouco maior, 1.158 mil toneladas.

Cerca de 80% da produção é para uso cativo, principalmente para a fabricação de PVC, óxido de propeno e para uso das indústrias de celulose.

O faturamento do setor no ano de 1998 foi da ordem de US\$ 660 milhões e o número de empregos diretos de 1.288. Considerando toda a cadeia produtiva do cloro, o faturamento ultrapassa US\$ 3,0 bilhões e o número de empregos pode ser multiplicado por 10.

2 - Algumas considerações sobre a produção de cloro no mundo

A capacidade instalada mundial para produção de cloro é de cerca de 45 milhões de toneladas.

Na Europa Ocidental, existem 79 plantas de cloro distribuídas por 14 países. A Alemanha com 3,6 milhões de toneladas/ano e a França com: 1,5 milhão de tonelada/ano, são os principais países produtores. Juntos respondem por 55% da produção total de 9,4 milhões de tonelada da União Européia.

65% da produção européia utiliza a tecnologia de células de mercúrio. Se considerarmos as tecnologia de células à mercúrio e células de diafragma de asbesto o percentual alcança 90%.

As indústria de cloro européias foram responsáveis pela emissão de 14 toneladas de mercúrio em 1997. Segundo a Eurochlor, a quantidade de mercúrio emitida por essas indústrias corresponda a 1% das emissões totais de mercúrio, de origem antropogênica e natural, na Europa.

Na Europa, as células de mercúrio e amianto devem ser substituídas até o ano de 2.010 por células de membrana semi-permeável. As novas plantas de cloro européias usam a tecnologia de membrana.

Os EUA são o principal produtor de cloro. A produção norte americana corresponde a cerca de 1/3 da produção mundial e sua capacidade instalada é de 12 milhões de tonelada/ano. A produção norte-americana emprega principalmente a tecnologia de células de diafragma à base de asbesto, sendo a tecnologia à base de mercúrio secundária. As duas tecnologias somadas correspondem a 85% da produção industrial de cloro norte-americana.

Na Ásia, destacam-se o Japão, com capacidade instalada de 4,2 milhões de toneladas/ano, e a China, com 3,9 milhões de toneladas/ano.

3 - Tecnologias empregadas para produção do cloro/soda

3.1 - Células de mercúrio

- Processo mais antigo e ainda de maior utilização no mundo
- · Maior consumo de energia elétrica
- A soda cáustica não necessita de operação de concentração suplementar
- Produtos de excelente qualidade
- As matérias-primas não precisam ser de alta pureza
- O mercúrio é poluente, mas pode ser eficientemente controlado

3.2 - Células de diafragma

- Emprega diafragma poroso à base de asbesto (amianto)
- O segundo processo em utilização no mundo
- Menor consumo de energia elétrica que nas células de mercúrio
- Consumo total de energia é maior, pois o processo exige concentração posterior da soda cáustica formada nas células
- · As matérias-primas precisam ser de alta pureza
- Os produtos das células são impuros
- Custo de manutenção do diafragma é expressivo
- O asbesto é material agressivo à saúde e deve ser corretamente manipulado

3.3 - Células de membrana

- Emprega membrana semipermeável
- Processo moderno, de tecnologia recente e com poucas unidades instaladas no mundo
- Consumo de energia elétrica comparável ao das células de diafragma
- Qualidade dos produtos similar aos obtidos por células de mercúrio
- Concentração de soda cáustica menor que no processo de mercúrio
- As matérias-primas precisam ser de alta pureza
- Custo de reposição das membranas é alto
- Pelas informações até hoje disponíveis, o processo não é poluente

4 - Tecnologias utilizadas pelas indústrias nacionais:

As tecnologias que utilizam o mercúrio e o asbesto correspondem a 96% da atual capacidade instalada de cloro no país.

A tecnologia de célula de diafragma poroso à base de amianto responde por 72,6% da capacidade instalada (ou 930,3 mil toneladas/ano), enquanto a tecnologia de células de mercúrio responde por 23,4% (ou 300 mil toneladas/ano).

As três maiores empresas, Trikem, Dow Química e Carbocloro, adotam tecnologias à base de diafragma de amianto. A Carbocloro produz cerca de 135 mil toneladas de cloro com essa tecnologia e 100 mil toneladas utilizando tecnologia à base de mercúrio.

A tecnologia à base de células de membrana semipermeável é utilizada por apenas duas empresas, a Aracruz e a Riocell, cujas capacidades instaladas somadas montam 51,3 mil toneladas de cloro, ou 4% da capacidade instalada total.

No Brasil, as células de diafragma de amianto são utilizadas pelos grandes e pequenos produtores, as células de mercúrio pelos médios e pequenos (a exceção é a Carbocloro) e as células de membrana sintética pelos pequenos.

5 - Aplicações do mercúrio e do asbesto no Brasil

• A indústria de soda/cloro utiliza dois materiais potencialmente agressivos ao meio ambiente: o mercúrio e o asbesto (amianto).

O consumo atual de mercúrio pelas indústrias de cloro/soda é de 8,7 ton/ano e o de amianto 153,8 ton/ano.

Em 1989, o consumo de mercúrio pelas indústrias de cloro/soda foi de 24 toneladas. Se comparado às 8,7 toneladas consumidas em 1998, as emissões de mercúrio foram reduzidas em 65% na década.

• Quanto ao mercúrio, o grande consumidor é o setor de garimpo, o qual é sabidamente poluidor e pouco afeito à quaisquer controles ambientais.

APLICAÇÕES DO MERCÚRIO NO BRASIL

Uso	%
Garimpo	49,2
Revendedores	23,5

Tintas e vernizes	10,0
Soda cáustica/cloro	7,6
Farmacêutica	2,9
Química	2,7
Lâmpadas	2,7
Artigos dentários	1,2

Fonte: Abidor

APLICAÇÕES DO ASBESTO NO BRASIL

Uso	%
Fibrocimento	80
Material de Fricção	13
Outros	7

Fonte: Abidor

6 - Destino e utilização das vendas do cloro no Brasil:

Consumo Setorial em 1997		(mil t)
Metalurgia/Siderurgia	0,9	
Papel/Celulose	62,2	
Química/Petroquímica	1004,6	
dicloroetano (DCE)	427,1	
óxido de propeno	213,8	
solventes clorados	76,5	
ácido clorídrico	119,0	
hipoclorito de sódio	53,2	
outros	115,0	
Tratamento de água	31,6	
Revenda	29,8	
Exportação	10,4	
Outros	3,1	
Total	1.142,5	

Produto	Aplicações
dicloroetano (DCE)	intermediário para fabricação do policloreto de vinila (PVC)
óxido de propeno	intermediário químico
ácido clorídrico	alimentício, auxiliar têxtil, papel e celulose, processo

	químico, sabões e detergentes, siderurgia, tratamento de água, tratamento de metalurgia;
hipoclorito de sódio	auxiliar têxtil, papel e celulose, processo químico, sabões e detergentes, siderurgia, tratamento de água, tratamento de metais e siderurgia;